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Notes for the Improvement of a Remote Sensing Multispectral
Data Non-Supervised Classification and Mapping Technigque

I. INTRODUCTION

A. Background

Any adequate analysis of flight data statistics from remote

sensing multispectral scanners leads toward a computational burden
so extensive for repeated and extended scenes of the earth from orbit
that we endeavor to adapt or develop and perfect an effective algorithm
for the automatic articulation of a scene. To be adequate, such a method
must both be effective, or thorough in that it articulates a scene
accurately, and be efficient, or economical in that its computational
requirements are reasonably within the state-of-the-art. The sought
technique is a non-supervised classification and mapping technique to the
extent that it should achieve articulation of the scene independently of
any other information or training area. The interpretation of the variously
articulated and correspondingly mapped characteristics of a scene of
interest would be obvious only to a limited extent, and adequate identifi-
cation would largely require comparison with ground truth information for
their complete identification. However, the advantages of being able to
complete automatically so much of the analysis and a considerable compression
of data should be obvious. Consequently, it has not gone without notice
that mappings of, per se, the spectrally dependent articulations and their
easily followed deriatives may play the most fundamental role in any
analysis for change detection. Probably the retrieval of automatic change

detection from multispectral scanner data must presuppose an adequate



algorithm for the non-supervised automatic articulation of the undoubtedly
obscure spectral functions of the data from repetitive overflights of a
scene of interest or from scene to scene as the case may be. This follows
from the mentioned functions being obscure and inconstant even in the
absence of any changes in the characteristics of interest when other condi-
tions change. This means that the signature of an item of interest may be
somewhat variable inadvertently, seemingly necessitating insatiable demands
tor ground truth data in order to re-calibrate the signatures before data
clagssification can be continued in those techniques which require supervision.
Contrariwise, the techniques which we pursue, the unsupervised techniques,
adjust automatically to any changes in the signatures.

B. Present Situation

During recent months there has been documented two different

algorithms for the subject technique: (1) Su'sl model, called "Sequential

1

Clustering,' and Jayroe's2 model, ''Spatial and Spectral Clustering." Each

of the authorsl’z, using samples of data, gave sufficient results to prove
that his model separately constitutes a major accomplishment. Each model
works; yet, the two models are quite different. Therefore, any immediate
attempt to combine the two models before they are fully developed and better

understood might be deleterious to their collective potential.

C. Opinion and Puypose
It does not seem’prudent at this time to favor one of the models,
in their present forms, over the other model or to decide which one of them
has the best potential. Consequently, to minimize comparison between the

two models at this time, this note will not further review Reference 2.



The purpose of this critical review is to try to find any parts of the
modell for which there may be a theoretical basis for a revision which

might improve its effectiveness without sacrificing computational efficiency.
The present modell had the benefit of adjustments after experience with data.
Similarly, the considerable further revision based on theoretical considera-
tions given in this note should benefit if parameter adjustments will be

fine tuned through experimentation with data.

IT. DISCUSSION
A. Description

Anyone wanting a general account of the 'Sequential Ciustering"
model more briefly than its developerl gave will find a very helpful brief
coverage of its principles and operation given by Krause and Frederick3.
They3 identify the sequential variance analysis as the key to Su'sl work,
and they note that it was originally developed by Krause, Jones, and
Fisher4 to detect periods of stationary behavior in time series. Howsoever,
the least-squares derivations of the sequential variance formulas based
on modes of chi-square are those which were given by Su and KrauseS.
Possible improvements to those key formulations will be suggested in this
note Section ITI. B.

The sequential variance analysis is used in Su's1 algorithm to
test whether scan line segments are homogeneous and to test which line
segments should be merged in the initial spectroscopic classification.
Preprocessing depends on the type of data and the objectives of the analysis,

may be necessary for higher accuracy. The first pass with the data



establishes the measures of the classes into which the data will be classi-
fied on the second pass. Iteration may be necessary because after the

data are put into the classes they, the data, do themselves give better
measures of the classes than those measures which could be found in the
first pass, etc. Anything which can be done to increase the accuracy of
the sequentjal statistical tests should both: (1) reduce the amount of

iterative computation necessary to give the best results, and (2) ultimately

give better results.

B. Statistical Sequential Clustering

1. Establishing New Classes

Equation (2-4) of Reference 1 shows that a set of M > 6
resolution elements are considered to be a homogeneous set of samples from
a new population or class when the M points, which represent them in the
hyperspace for K spectral channels, are such that the squares of the ratios
of their distances from their mean and the distance from the origin to
their mean are all EVTZ, where T2 "is some threshold value to be given."

No reasons were offered and no discussion was given to show whether or not
the value to be used for T2 should depend on M. Also, no reasons were

given for using the mean distance to normalize the distances from the mean.
The criterion seems somewhat discordant, opposite from what one would have
expected; e.g., haze increases the albedo of the atmosphere while lowering
the ground level illumination, and both effects reduce contrast in ground
level images. Yet, the cited criterion says that when the reflected illumi-
nation is high, then the difference between different classes must also be

higher in order for such difference to be accepted as meaningful.




Instead of normalizing by the mean, one should normalize each
of the K components of the deviation from the mean by the sample estimate
of the standard deviation Sy in that same dimension, where, following

equation (2-1) of Reference 1,

M
s, = | = E (xki - xk) s (1)

M 1/2

M-1)

the unbiased estimate ( is not used herein for the further deriva-

k

tions. Then, equation (2-2) of Reference 1 would be replaced by

Besides deleting the denominator in equation (2-4) in Reference 1
there is a further consideration of the relation between T2 and M > 6.
Because the coordinates X4 are proportional to spectral radiant intensity
in channel k (see page 2-4 of Reference 1) they can have only positive
values and therefore cannot quite have normal distributions. Nevertheless,
from a hypothetical spherical joint normal distribution in the K dimensions
one can approximate roughly the relation which one might reasonably expect
between T2 and M. First, consider the case where the population mean u
and variance 02, per dimension, are known or where M is large enough for
their accurate determination. Then, for a K-dimensional spherical distri-
bution (meaning zero covariances), the ratio of the square of the resultant

. 2 . 2 . .
distance d  from the mean and the variance 0 per dimension has a chi-

square distribution with K degrees of freedom; the expected value is K.



Let P be the right side area for XPZ; i.e., for an individual sample the
probability is 1 - P that

a8 10% < x,” (3)

For the set of M samples, from the hypothetical spherical distribution,
{where one tests the hypothesis that the consecutive samples are random
observations of the same population) the probability Po that not any of them

fail to satisfy equation (3) is
po=a-nY. (4)

If one or more of them fail inadvertently to satisfy equation (3), then

the first sample is discarded, the probability P. for which is

1

Pp=1-a-p". (5)
However, because each discarded sample is replaced with another sample,
one finds essentially that each sample has the same probability of being
discarded; that P1 in equation (5) is also the fraction of samples which
are discarded. When PM is numerically much smaller than unity, then the
right side of equation (5) is approximated very well by PM, giving for

the area (right side) index P in equation (3)

P Pl/M ) (6)




Consider now another case of a hypothetical distribution which
is known to be normal in K statistically independent dimensions. Let it
be just coincidental that the distribution is spherical, and let the coor-
dinate means and variances be estimated from M random samples. One wants,
then, to establish population probabilities for sz, the square of the
displacement from the centroid of the M samples when its sample values

Axi2 are given by equation (2). It was given that x. 1is normally distributed

k

with mean My and variance o Then consider

-
AxT = I T, )]

where

k i . (8

The variable r, in equations (7) and (8) has a one~dimensional r distribution

with M - 2 degrees of freedom, for which tables are given in Reference 6.
With summations for the M samples one finds for r. that the sample estimates
of the mean and variance are zero and unity, respectively. The table of

areas of \rkl show, for example, that the 99 percentile of |r is an

il

increasing function of M, giving, to the limit of the table,

2,051

A

|| < 2.556
C))

(=)
A

<M< 122



The same percentile for the standard normal distribution is 2.576. The
parameter r2 will be used in the derivations in Section II. C. for the sum
of F parameters, but in the present section one will not try to develope

the distribution of sz in equation (7) as a K-dimensional F distribution;
instead, one approximates (xk - §£)/sk by a normal variable (xk - uk)/ok

and hopes that agreement is sufficient to support the approximation that
each of the k variables r, in equation (7) is normally distributed with zero
mean and unit variance. This is more particularly tempting because the
approximation is used only to support the X2 distribution sz in equation (7).
So far as one can assume that the data in any of the k channels is statisti-
cally independent of the data in any other channel, it follows that the
distance square sz in equation (7) (normalized for individual components

as in equation (8) ) is X2 distributed with K degrees of freedom. Because,
in this example, approximately the same value was found for the variance

in any channel it follows that sz in equation (7) is the same ratio as

in equation (3); then equations (3) through (6) apply in this case also.
More rigorous tests are developed in Section II. C. considering correlation,
etc.

The examples just considered are unnecessarily restrictive; it
still follows that sz in equation (7) has the X2 distribution with K degrees
of freedom regardless of whether or not the variances in the different
channels are quite different. This follows because the r distribution for
the r in equations (7) and (8) is independent of the mean and variance of
any X, . It is anticipated that the extent to which the multispectral scanner

data will be non-normal will have only negligible effect on the end results




just given. One does anticipate, though, that non-vanishing cross-channel
correlation may have a practical effect in that the number of degrees of
freedom in the X2 distribution of sz in euqation (7) may be effectively
somewhat less than K. Otherwise, instead of the equation (2-4) in
Reference 1, one would require all the Axi2 calculated for the set of M

samples by equation (2) to satisfy the following criterion, with K degrees

of freedom for XZ:

2 2
Axi < X(PI/M) (10)

where (Pl/M) is the right side area for x2 and Pl is the average fraction

of samples which one is willing to discard inadvertently before deciding
that a homogeneous population is being sampled (new class). TFor example, if
K is 4 and M is 6, and if one prefers not to discard more than six percent
of the samples when they are homogeneous, then all of the Axi2 must be less
than 13.3; the average or expected value would be K or 4 and the mode or
most frequently occurring value would be K - 2 or 2.

The fraction of inadvertent rejects P. in equations (5), (6),

1
and (10) is one type of risk, say 'producer's risk." There is also a
"consumer's risk," the fraction P2 of samples which should have been rejected
but which are inadvertently included in a new class. The three parameters
Pl’ P2, and M are approximately related not only by

ERLIE W (11)



which follows from equations (6) and (10), but also by

sz

d(Pl/M) <0 (12)

which follows from geometrical considerations of neighboring populations.

Operationally, though, one should ignore P2; should consider empirically

a parameter O as a function of the two independent parameters M and Pl, where

0 is a judicious measure of the quality and computational efficiency of the
analysis. Ideally one would like to have iso-0 contour curves plotted on

a graph of M versus Pl which would be generated by practice with typical

data. The results would be used to perfect the model expressed by equation

(10),

2. Merging Excessive Classes

When the number of established classes exceeds the prescribed
maximum allowable number wmax it is necessary to combine the two classes
which are most similar. Reference 1 used the Euclidian distance between
the means of two classes as the measure of similarity for this purpose.
Instead, it is more pertinent and almost as easy to use a distance measure
in which difference between the means in each of the K spectral dimensions
is normalized by the two-class estimate of its standard deviation. One
should, by assuming statistical independence between class i and class j,

replace equation (2-8) of Reference 1 by

— — 2
K ble - X
2 i.k i,k
i3 " p —:-———Js—ls (13)
’ =1 i, i,k

10



" s, , s

y4 1,K K

i,j,k m, m,
1 N

where Si;k is the variance in dimension k for the m, samples in class i and
3,,k is the variance in dimension k for the mj samples in class j. One

can test the hypothesis that the populations which the two classes represent
are not different beyond some level of significance or probability PC. Then,
to the extent that the normalized differences in euqation (13) are approxi-
mately normally distributed with zero mean and variance one, and to the
further extent that the components in the K different dimensions are
statistically indepedent, the squared difference D% j from equation (13) has

i,

a XZ distribution with K degrees of freedom; i.e., the probability is

P that
(o4
2 2
Dis SXa - P) (14)

For example, K is 4 for a multispectral scanner with four spectral channels;
then, without interchannel correlation, it follows by equation (14) that

the expected value of D% j from equation (13) is 4, there is only a 10
3

percent chance that D? ., would be as small as 1.06, and there is even a
3

10 percent chance that it would be larger than 7.78.

3. Classifying New Samples Into Established Classes

a. Tests Being Used
In the statistical sequential clustering method which is
used in Reference 1 each new sample is checked (to see to which one, if

any, of the established classes it should belong) by a series of two tests.

11



The first test is a sequential test of the variance, to restrict its increase
or decrease. Among the classes which are compatible with the new sample
by the sequential variance test, the second test assigns the sample to the
class for which the normalized distance from the mean is the least. Regard-
less of other changes which seem to be needed, reversing the order of two
such tests would seem to be an improvement. When the apriori assumption is
that the different classes represent populations which may have equally
likely membership, then, one might test to see which classes, if any, are
such that the normalized distances from the new sample to the means of
the classes have reasonable values. Then, instead of choosing the smallest
one of those values, one might prefer to consider, say, the smallest three
values and use either a sequential variance test or a sequential mean test
to find which one of the three classes would most nearly continue its
sequence in the way which is in best agreement with the particular order of
the compilation of the class.
b. Mean Versus Mode Estimators

In his sequential variance test, Su1 continued as Su and
Krause5 had done by, beginning with equation (2-15), using the mode of X2
("most probable value") instead of the mean (expected value); thus, the
factor (mi - 3)/(mi - 1) in equations (2-16) and (2-18) of Reference 1 and
in equations (5) and (7) of Reference 5 is spurious and undoubtedly must
bias the result considerably. Also, if the mean had been used instead of
the mode, then the sequence (see equations (2-15), (2-17), and (2-18) of

Reference 1) could have started with the second sample instead of the fourth.

12




¢. Variance Versus Standard Deviation
Another discrepancy of unknown consequence in the

sequential variance test in Reference 1 was continued as Su and Krause5
had previously done by assuming that an appropriate estimator for standard
deviation is the équare root of the corresponding estimator for variance.
This may be a reason for their having used the mode instead of the mean
as a basis for the sequential analysis. Howsoever, equation (2-14) in
Reference 1 is a correct beginning for the derivation of a sequential

variance test:

where m is the number of samples in a class being checked, including the
prospective member as the last member where the sequence of compilation is
preserved, and where some subscripts for channel number k, etc. are
temporarily dropped for brevity. Instead of equation (2-15), the mean of

X2 of m - 1 degrees of freedom is
2
Elx] =m-1 (16)

and, instead of equation (2-16), the mean of s? is, by equations (15) and

(16),

s?:[lfl]oz for 3 =2,3, ..., m. (17)

13



d. Normalization: Standard Deviation Versus Mean
. 2
Let © ” be the standard deviation of sj; then, by Reference 6,
S.
it is

2

o, = [2¢5 - 112

/3 - (18)

The question at this point is whether, in the least squares summation as in
equation (2-17) of Reference 1, the deviations from the mean should be
normalized or not, and if so, with what? 1In References 1 and 5 the devia-
tions from the mean were normalized by the mean, in equation (2-17)
similarly as in equation (2-4) of Reference 1. It seems necessary to
normalize the differences by the standard deviation in equation (18) so
that the least squares determination is not dominated by a few of the most

uncertain values. Then equation (2-17) in Reference 1 should be replaced by

5 m 2 2 2
R _ 8 3 [ 2%
352 30°  3=2 .
3
2 2
3 m .2 s, -1
= =5 I 1 -1 1= 1| /2 (19)
30° j=2 \ 7 o J
m m j2
= Lé 02 b is - 7 Tl S.4 (20)
o j=2 j=2 \ I

Then, where 02 is the sequential estimator of 02 which makes equation (20)

vanish, equation (2-18) of Reference 1 should be replaced by

14



Q
]
TRl =

3 2 A m 2
= )s, /L 3s; 21
3=2 i-1 ] / = ] -’ (21)

e. The F Distribution Versus Chi-Square

Su and Krause5 gave the same distribution, X2 withm - 1

2

b

~

degrees of freedom, for m 32/02 as they had correctly given for m 32/0
and Reference 1 continued that presumption in its equation (2-19). It
would be difficult to establish the distribution of 82 in equation (21)

from basic principles. That sequential estimator of the variance is the

ratio of the sums of two series, but the corresponding terms in the two

series not only are not statistically independent of each other but also

are not statistically independent of preceding terms The relationg are
2,2
very involved; however, it seems likely that the distribution of m o /o

might not be appreciably different from that of msz/Oz. Then, although

it follows from the normal assumption for x that m sz/o2 has a X2 distri-
bution with m - 1 degrees of freedom it reasonably can be suspected that

A

m 0 /0 may have also approximately the X2 distribution with m -1 degrees

of freedom. Therefore, their ratio sz/;2 probably could have nearly an

F distribution with m - 1 and m - 1 degrees of freedom or not, depending

on whether the correlation is low enough. Therefore, while the correlation
has not been evaluated either theoretically or by Monte Carlo experiment,
the distribution of the ratio is quite problematical, and using the chi-
square limits in equations (2-19) and (2-20) of Reference 1 (and in equation
(8) of Reference 5) is quite arbitrary and is not known to relate to the

stated percentage of significance. Some further analysis to illustrate

the nature of sequential tests is given in Section II. B. 4. herein.

15



f. Replacing Several Tests with Similar Tests

It will be shown in Section II. B. 4. that the kind of
sequential test which is used in Reference 1 (to give a least-squares
estimator of the variance) gives an estimator which differs from the one
commonly used, the maximum likelihood estimator, in that the weight given
to a member of a given sequence depends on its position in the sequence.
In loocking for ways to reduce the burden of computations, which sometimes
increase as refinements are added, it will be shown in Section II. B. 4. that
it is prudent tentatively to abandon sequential tests, for their use is not
likely to be a reason for the effectiveness of the method which has been
demonstrated in Reference 1. It seems likely, too, that the number of tests
should be reduced. Instead of having two separate tests to classify a new
sample, a sequential test of the variance and a non-sequential test of the
mean (called Xz—test and N-test in Reference 1), it seems preferable to
replace those two tests with one non-sequential test of the deviation from
the population mean. This test will be developed in Section II. C. from
student's t distribution. Reasons why the same test, or a similar one,
should also be used not only to replace the one to establish new classes
but also to replace the one to merge excessive classes will also be given

in Section II. D.

4, Nature of Least-Squares Sequential Tests

In a class of m samples, including the prospective member of
the class, which are considered to be random observations Xj from a homo-
geneous normal population of observations of a characteristic scene in a

given spectral channel, the maximum likelihood estimator x for the unknown

16




mean U of the population is

m
x=(1/m) Z x, . 22)
i1 A
J
Equation (22) shows that X is a random variable, a function of the random
observations xj, with a value §3 for each serially-increasing sub-set j of
m. The expected value and standard deviation of ;3 are U and O//f, respectivel; .

where O is the unknown standard deviation of the population x being sampled.

The sum F of the squares of the normalized differences between §5 and U is

for which the partial derivative with respect to U is

m
oF 2 .
w (2/67) T - i(x, - W
j=1 )
? m m _
= (2/c){uwl §-T 3%, ) (24)
j=1 =1
Let Y be the sequential estimator of U such that its value for u makes
equation (24) vanish; then
~ m _ m
u o= I ix./ L j (25)
j:l J J=l
. +...
) X + (xl+x2) + (xl+x2+x3) + + (xl+x2 +xm)
m
r ]
j=1

17



- 1 ' : (26)

Because of the statistical independence of the observations, it follows
~

from equation (26) that the mean of ¢ is the population mean U and that

. 2,
the variance 0 . is

2

2(2m + 1) 0°/3m(m + 1) . 27)
Thus, x and U, the two estimators of Y, have the same mean, and the ratio

of their variances is

u/ o 5 = 2@2m + 1) / 3(m + 1) (28)

which increases asymptotically from one toward 4/3 as m increases from

one. In considering ; in equation (26) as a random variable, one does,

of course, imply that the specific observations Xj are to be replaced by
not-yet-made observations, that they are a set of statistically independent
normal variables, each with the same mean Y and variance 02. Thus, both

x in equation (22) and ; in equation (26) are linear functions of the same

set of statistically independent normal variables, so they are also both

normal and somewhat correlated.

~

The correlation coefficient p of % and 4 is related to the

covariance XA, involving expected values E[ ], by

18




p = )\/Ofoﬁ (29)

A= El(x - w@@ -wl
-1
l m
= E I:l-.{(xl—u) + (xz—u) + ..}(jfial 0%{10 + 2(xm_l—u) + ...‘
- Bl 42 -wi 4 .l ]
™ m-1 " e/ e ]
j=1
= E[(x—u)z]/m = Oz/m (30)
o— = o//m . (31)

Then, by equations (27), (30), and (31), it follows that the correlation
coefficient p in equation (29) is

o= [3m+ 1)/2¢2m + 1)]/2 (32)

which decreased from a maximum value one to an asymtotic value 0.87 as m
increases from one.

No way is evident whereby these results for {i could be used to
construct a criterion for classification. The purpose which is served,
instead, is heuristic, to examine an estimator {l which is simple enough for
its properties to be shown and which belongs to the least-squares-sequential
family in which 82 in equation (21) is too difficult to analyze very well.
Equation (26) shows that ﬁ involves weighting the members of the class in an
arithmetic progression from the last to the first, and is therefore very

insensitive to the last member or prospective member. It is difficult to

19



see what advantage, if any, this might have. Actually the mean and variance
of ﬁ and the correlation between ﬁ and x are all invariant to reversing

the order of the weighting progression. The correlation 0.87 by equation
(32) is even higher than one might have guessed: it probably is a good
indication that all such estimators may be highly correlated with their
corresponding unbiased or maximum likelihood counterparts. If so, then

both the F distribution discussed in Section II. B. 3. e. and the x2 distri-
bution, which was used, are quite inappropriate for equations (2-19) and
(2-20) of Reference 1 and for equation (8) of reference 5.

C. Classification With F Distributions

1. F Distributions for Each Channel

Because the analysis so far in this note shows that the
techniques which were used in Reference 1 to classify a new sample, to
decide whether or not it should be put in an established class, are seriously
deficient of any firm statistical theory basis, one now returns to develope
further the technique of equations (7) and (8) of Section II. B. 1. in
order to have not only a valid test which will serve to decide the addition
of subsequent members but also a similar test to establish a new class.
After the formulation has been developed in this section for zero correla-
tion between channels, it will be revised in Section II. C. 3. for correlation.
The expedient by which the same test, or a similar test, can
be used both for establishing a class and for deciding further membership
in the calss is as follows: (1) a class with m members infers a population
for which sz in equation (7) has a consequent distribution with limits

which the prospective next member is required to satisfy, but (2) in checking
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for a new class each of the M prospective members is checked against
possibly other limits for the same distribution which they collectively
infer for a further prospective member. Thus, the two tests are different
only because on the one hand the variance of x - x in equation (8) is
different because x and x are statistically independent only for assignment
of x to a class for which the mean has already been assessed as X and on
the other hand the two tests may be different because different fiducial
limits may be used for deciding to accept the hypothesis being tested.

The procedure which will be followed in the derivation is that
r2 in equation (7) is proportional to a variable which has an F distribution,
etc.

The variance of the numerator in equation (8) is
o2 _ = o*@r))/ (33)
XX b

where the minug sign is used in testing for a new class and the plus sign

is used in testing a new sample for membership in an established class. So,
when the numerator of equation (8) is normalized with its standard deviation
its square has a X2 distribution with one degree of freedom. Also, the
square of the denominator time m/O2 has a X2 distribution with m - 1 degrees
of freedom. The ratio of those two x2 variables with each divided by its

own degrees of freedom has an F distribution with 1 and m - 1 degrees of

freedom; i.e.,

21



P
B(Eli
ML
S———
=
[y
i

= (P-‘—‘l> [(x%) /51 (34)
my

[ (x-%) [0V (mgl) Jm] > /1
(ms?/g2)/ (m-1)

F(1, m-1), (35)

where the mean and variance of F are

Mp = (m-1)/(m-3), m >3 (36)
o = 2(m-1)% (m-2)/ (m-3) > (@=5), m>5 _ (37)

2. All Channels Without Correlation

The parameter which must be within limits for classification

is, by equations (7), (34), and (35),

m-1 T x Kk = z Fk(l, m-1) (38)
m+l [ k=1 k =1

where the choice of sign has the significance which was stated for equation
(33). In the unlikely event that correlation between channels is small
enough to be neglected, then the mean of the sum is the sum of the equal
means and is KUF, see equation (36), and the variance of the sum is the sum

of the equal variances and is KO%, see equation (37). Of course, these
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results presuppose the equal weighting for the data from all channels as

K K
per equation (38), but if unequal weighting w,/ I w,_or w / T w _ is
k k=1 k k k=1 k

wanted it has only to be inserted in both sides of equation (38).

3. With Inter-Channel Correlation

Regardless of how the K parameters Fk in equation (38) are

correlated, the mean of the sum is the sum of the means,

Hep = KM (39)

and the means and variances of all of the Fk are invariant of k. Because

all of the first partial derivatives of the right side of equation (38)

with respect to the Fk are one, it follows exactly by the propagation of

error (e.g., Reference 7) that the variance is

2 K-1 K

2
o = Ko +2 I z A (40)
Ly F k=1 1=k#l <

where the covariance Kkl between Fk and Fl is, by equation (34),

>
|

w1 - ELE ) (Fi-up) ]

= E[FkFll e (41)
1 m
T h 2 FkaFla uF
a=1l
2 m
-1 1 1 — — 42
n <n1 ) ( > = I [ _~x)(x, -x.)]
- \ m¥Fl 2 2 m - ka "k la 71 42)
sks1 a=1
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and where Oi in equation (40) and Hp in equation (39) are functions of m
alone in euqations (36) and (37). Thus, the right side of equation (38)
can be replaced by the sum of its mean from equation (39) and some constant

A times the standard deviation from taking the square root of equation (40);

i.e., the criterion is

1\ ¥ /e -xV

. B}

ml) oy [ 7%

<m7i-—l> k=1\"s. ) " Prr /Ogp 2 A (43)

The choice of sign in equations (42) and (43), again as in equations (35)
and (38), is the same as that which was stated for equation (33).

It must not go without notice that the main computational
burden is imposed by the necessity to compute the covariance in equation (40).

D. Merging by F Distributions

In Section II. B. 2. the squared distance between the empirical
centroids of two classes, equation (13), was found by ignoring any inter-
channel correlation and by using the normal approximation to the components
for which the sum of the squares is X2 distributed. It will now be shown,
without making those approximations, how to transform equation (13) into
a sum of parameters which have each an F distribution.

First consider only one component and temporarily drop the channel
subscript k. Let ui and uj be the means of the populations for classes i
and j which have size m, and mj, etc. as was stated for equation (13).

Then, tij as shown in Reference 8§,
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- = . .\ _
_(Xi Xj) (ui ui) mimj (mi ms 2) \
2 A DY — (46)
J m.sg + m,sg i 3
1 1 1 3]

will have Student's t distribution with m, + mj - 2 degrees of freedom.

2
Then, by Reference 9, tij has an F distribution with one and mi + mj -2

degrees of freedom; i.e.,

— - 2
m,m,(m, +m, ~ 2) (x,~x.) - (M, -U,
jmy(my + o, (G - 1™ s
m, + m, 2 2 k, ij
i 3 (m,s, + m.,s,)
ii il
where the mean U and variance 02 of F .. are, by Reference 6,
F . .. k, i
k, ij k, ij
ml+mJ—2
= + >
Meoo m w4 Mtmy T (46)
k, ij i 3
2
9 m, +m, - 2 m, +m, - 3
= S R S -
N .. m, +m, — 4 2 m, +m -6 | ™ + mj 6 - (47)
k, ij i h| i ]

The K channels could be considered collectively by summing equation
(45) just as equation (38) was given by summing equation (35); then,
equations corresponding to equations (39) through (41) would follow by

changing the notation

u
F (48)



- - 2 - = 2
m.m.(mi+m.—2) [(xi—xj)—(ui"uj)] [(Xi-xj)-(ui—uj)] .y
,+m, 2 2 2 2 ¥

i ] m,s. +ijj K m S, +mjsj 1 k

(49)

m,m,(m,+m.—2;]2
i3 i i

E(k,1)
- (50)
m.+m, 2 2 2 2
i _J (miski+mjskj)(misli+mjslj)
E<k1>=E[(§—§>—(—>2 (§-§)-(—>2] (51)
’ i MR i% HiTH
A TR TR YO TRE I | S Ferg T Y e € 52
= [ Xpi M) ®pi7¥ ) (5! 3715 ] (52)
m, m,
I Y SO S LI Sy PO Y -
Tmpop ke e ey 2 ke ks g *y5) ]

(53)

where equation (52) follows from equation (51) because correlation is assumed to
be appreciable only between channels within a class and not between a given
channel and given class and a different channel and different class.

Whether or not such correlations might be sufficiently small to support
elegantly the computational expedient by which equation (51) is replaced

by (52) and in turn by (53) could be established by analysis of representa-

tive data, but only relative results are needed in the test for merging
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excessive classes because it is only a question of which two classes to
merge and not a question of whether or not to merge any classes.

It will be seen that the summed terms in equation (53) are the
same as that in equation (42) when they are converted to the same notation;
thus, the criterion for merging two classes does not require a separate
computation of such summations which are already used in the criteria for

forming new classes and classifying new samples into established populations.

III. ALGORITHM FOR UNSUPERVISED CLASSIFICATION USING F DISTRIBUTIONS

For each class or prospective class one needs values for the following

parameters:

m = number of members in the class, m > 6
m

X, - 1 L x,  , class mean in each channel k =1, 2, ..., K

k moo1 ka

2 ) — 2

s = — I (%, _-x )7, class variance in each channel

k moo1 k k

1 0 — — .12
= = - - k
le - azl [(xka xk)(xla xl)] each pair of channels and 1
-1\2 2 2
A = m Q /S s " " " " " " "
kl <n71> kl""k "1
m~1

UF ~<m-— )

2 2 -2
% = 2 (m—S)
Hep T Ky

2 K-1 K
Ogp = Kop + 2 I z >‘k1 '

k=1 l=k+l
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Also, for each pair of established classes i and j containing m, and m,

members one needs values for the foliowing parameters:

UF,, = (mi+mj-2)/(mi+mj—4)
1]
2 2
o = 2u (m,+m.-3)/(m +m_ -6)
F,. F,. i ] i ]
1] 1]
om (m4m -2) K (x .-x .)°
- i j i 3 5 ki "kj
RINET m, +m, k=l m.s2, + m. s>
>4 ] 1%ki T "5%kj
5 2
N | mytm2) , Q1,1 % 5
k1,1 m_+m, 2 2 2
i i (miski+ mjskj)(misli+ mjslj)
= Ku
F..
UZFij 1]
2 K-1 K
o = Ko + 2 z X A
Z .
i3 Fi =1 l=k#1 b3
A, = (ZF,. - M
P Z
ij ij Fij)/oEF_ )

ij

The two other formulas which are always used together, with a purpose

which depends on what datum is substituted for the parameter x, , are

k
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m~1 -2, 2
IF = (m¥l) g (xkka) /sk
k=1
(54)

& = [CFupp) /0p] J
The number W of retained classes must not exceed an allowable number
W .
max

Step 1. Read control parameters Ao’ Al’ M > 6, and wmax'

Step 2. Read the first M samples.

Step 3. Calculate parameters for prospective class.

Step 4. With the ;k and si from step 3, calculate a value of A in

equation (54) for each of the M samples by using the values of X for that
particular sample in equation (54) with the minus sign. Does the largest
value of A satisfy A < AO? Yegs: go to step 7. No: go to step 5.

Step 5. Discard the first sample accumulated.

Step 6. Read a new sample, then go to step 3 (recursion formulas
may be helpful).

Step 7. Designate a new class having the parameters extant.

Step 8. Does the program reach the end of the sample sequence?
Yes: go to step 9. No: go to step 11,

Step 9. Print out any parameters and classification map which are
required by the Flight Data Statistics Office.

Step 10. Stop.

Step 11. Does the number of classes W satisfy W i-wmax? Yes: go to

step 14. No: go to step 12.
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Step 12, Calculate class-~pair parameters for all combinations of
classes in pairs (recursion formulas may be helpful).

Step 13. Combine the two classes i and j which give the smallest
pair—parameter Aij and compute the single-class parameters of the resulting
class.

Step 14. Read a new sample.

Step 15. By using the values of X from the new sample in equation
(54) with the plus sign, calculate a value of A for each of the W established
classes according to their given values of ;#, Oi, etc. Does the smallest
one of the m values of A satisfy A f_Al? Yes: add the sample to that class,
revise the parameters of that class and go to step 8. No: put the sample
in hold and go to step 16.

Step 16. Has the number of samples in hold reached M? No: go to

step 1l4. Yes: go to step 17.

Step 17. Calculate parameters for prospective class,
Step 18. With Ek and si from step 17, calculate a value of A in

equation (54) for each of the M samples by using the values of Xy for the
particular sample in equation (54) with the minus sign. Does the largest
value of A satisfy A < Ao? Yes: go to step 19. No: discard the first one
of the M samples held for step 17 and go to step 1l4.

Step 19. Designate a new calss with the parameter values which are

extant (from step 17).

Step 20. Empty the hold from step 16 and go to step 8.
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